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Abstract
The problem of wave packet broadening in the method of wave packet molecular
dynamics simulations of electron–ion nonideal plasmas is discussed. It is
shown that when using a harmonic restrictive potential for the packet widths,
simulation results depend strongly on the constraint parameter. Two new
approaches to constraining the packet broadening in a less stringent way are
analyzed: periodic boundary conditions for widths and a dynamic constraint,
based on filtering close particle collisions. These different ways to localize
electrons are compared by calculating the dynamical plasma collision rate and
the particle pair distribution functions.

PACS numbers: 52.27.Gr, 52.65.Yy, 52.25.F

1. Introduction

The method of molecular dynamics (MD) is widely used for simulations of the static and
dynamic properties of nonideal (strongly coupled) plasmas in equilibrium and nonequilibrium
states. It allows us to study dynamical responses including the dynamical conductivity
[1, 2] and the dynamical structure factor [2–5], recombination rates [6], relaxation rates
[2, 7–9], etc. Nevertheless, pseudopotentials used for short-ranged interaction between
electrons and ions are the subject of controversy. The well-known pairwise models such as
Deutsch [10], erf-like [4], corrected Kelbg [11] and other potentials have limited applicability
in describing close particle collisions and the effects of electron degeneracy. Most of these
potentials imply the approximations needed for mapping the quantum system distribution,
described by the Slater sum, onto a system with the classical Hamiltonian. Recently the
methods of this mapping have been advanced to statistically reproduce various ab initio data,
for example the pair distribution functions and the electron degeneracy for the ideal Fermi
gas [12]. However, most of the pseudopotentials remain temperature-dependent and contain
fitting parameters. This formally restricts MD to the systems close to equilibrium. Moreover,
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in spite of the fact that the pseudopotentials work well in the classical plasma limit, their
general ability to give insight into the quantum dynamics remains questionable [13].

In contrast to the pseudopotentials having adjustable parameters, the method of wave
packet molecular dynamics (WPMD) in its original formulation is a fully ab initio method. It
was first applied in [14–16] to study the dynamical response of nonideal plasmas. WPMD is
thought to capture some of the plasma quantum effects while keeping classical equations of
motion in a parametric space and thus providing almost the same computational efficiency as
the conventional MD.

The single electron wavefunctions in WPMD are represented by wavepackets (WPs), for
which the most computationally efficient is the Gaussian form [16]:

ϕ(x, t) =
(

3

2πγ 2

)3/4
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{
−

(
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− ipγ
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where r and γ determine the WP centre and width, and p and pγ are their conjugate momenta
respectively. After constructing the full trial wavefunction from the individual one-electron
WPs and applying the variational principle to the time-dependent Schroedinger equation, the
WP parameters become dynamic variables for the effective classical Hamiltonian. The ions
are treated as classical particles. There exist improved WP models with more parameters for
the basis wavefunctions [17] or non-Gaussian basis [18].

The most elaborate and computationally demanding way to describe the WP dynamics is
to use single determinant antisymmetrization of the total wavefunction for the electrons with
the same spin [19]. In the following, discussing the broadening problem (which presumably
remains also for the antisymmetrized case), we for simplicity consider the product factorization
of the N-particle wavefunction �({xk}, t) = ∏N

k=1 ϕ({xk}, t). In this case, the evolution of the
WP parameters {rk(t), pk(t), γ (t), pγ (t)} follows the solution of the symplectic equations of
motion with the Hamiltonian
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where m is the electron mass and rkl is the relative distance between the particles k and l. From
the computational point of view, this method is equivalent to MD with an additional degree of
freedom for each electron connected with its variable WP width.

We note that the model construction of the WPMD method is based on the assumption
that the total wavefunction (in a product state or an antisymmetrized form) is a combination of
contributions from each electron. The essential feature of selecting these contributions in the
form of compact WPs is that they are described by a small number of parameters allowing for
‘classical’ localized interpretation. The drawbacks of this construction are severe limitation
of the wavefunction shape and poor description of electrons, delocalized in a phase space.
Additional artificial localization constraints, restricting the WP spreading, are often required
to keep the WPMD model within its applicability range.

As can be deduced from (2), the WP of a free electron spreads infinitely. The last term in
(2) restricts spreading only in the case of strong interaction between an electron and ion, i.e. at
high plasma densities and low temperatures. Simulations show that for the plasma parameters
considered here (T ∼ 104 K, ne ∼ 1021 cm−3, � = (4πne/3)1/3e2/(kBT ) = 0.5 − 2), a
noticeable number of WPs spread until they completely cease to interact with other particles.
It constitutes the main problem of the Gaussian WPMD method and in what follows, we
consider different approaches to restrict the width of such WPs.
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(a) (b)

Figure 1. Real part of the dynamical collision rate. (a) Fitting of WPMD with the harmonic
constraint (solid lines, values of γ0/λth are shown on the curves) to the MD with the Kelbg
potential (circles); T = 1.35 × 105 K, � = 1. (b) 1 (circles): MD with the Kelbg potential, 2:
WPMD with the harmonic constraint, γ0/λth = 0.88, 3: WPMD with the energy-based constraint,
U0/kBT = 5, 4: WPMD with PBS for WP widths; T = 3 × 104 K, � = 1.

2. Wavepacket restriction and simulation results

A simple solution proposed in [16] was to introduce an additional harmonic term �H =(
9h̄2γ 2

k

)/(
8mγ 4

0

)
to the Hamiltonian (2) which prevents the WP from spreading. It can also

be done by changing the imaginary part of the trial wavefunction (1) [20]. The free parameter
γ0 stands for the mean value of γ if there were no Coulomb interaction. In [16] it was taken
to be γ0 = 0.64λth, where λth = h̄/

√
mkBT is the thermal electron wavelength.

As only a rough approximation for γ0 can be made, it is necessary to check how strong this
parameter affects the simulation results. To do that, we consider calculations of the dynamical
collision rate ν(ω) defined via the dynamic plasma conductivity σ(ω) = ω2

pl

/
[4π(ν(ω)−iω)],

where ωpl is the Langmuir frequency. The dynamic conductivity in turn is calculated using
the Fourier transformation of the total current autocorrelation function [1, 2] obtained from
simulations. The results of WPMD simulations with different values of γ0 are compared
with the results of the conventional MD in figure 1. It is seen that the collision rate depends
significantly on the parameter γ0 which is not strictly defined. The value of ν(0) for WPMD
fits that for MD at γ0 = 0.72λth for T = 1.35 × 105 K and γ0 = 0.88λth for T = 3 × 104 K.
The assumption that the relation between γ0 and λth is fixed [20] brings us back to the problem
of temperature-dependent potentials discussed in section 1.

The additional term in the Hamiltonian which restricts WP widths disturbs the electron
trajectories and therefore affects the results for ν(ω). To study the broadening we performed
test simulations with unrestricted widths, for which periodical boundary conditions (PBCs)
were introduced analogous to the conventional PBC for the particle coordinates and with the
same period equal to the cell size. It was found that the width distribution converges to a
stable limit with an increasing cell size. However, as seen from figures 1(b) and 2, this PBC
model for the widths leads for Gaussian WPs to a very broad width distribution and severely
underestimates interaction.
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(a)

(b)

(c)

(d)

Figure 2. (a)–(c) Pair distributions and (d) the WP width distributions for MD with the Kelbg
potential (squares, (a)–(c) only), WPMD with the harmonic constraint (triangles), WPMD with
the energy-based constraint (circles), WPMD with the PBS for WP widths (rhombus). Simulation
parameters are the same as in figure 1(b).

The idea of the method discussed below is to prevent the WP from spreading, keeping the
unperturbed width dynamics during close collisions between particles. This approach follows
the general idea of introducing different Hamiltonians for strongly and weakly interacting
particles and switching between them during MD simulation [21]. As WP spreading arises only
for electrons which weakly interact with other particles, it is reasonable to imply restrictions
only for such WPs. The simplest criterion to distinguish between weakly and strongly
interacting electrons is to find its binding energy with the nearest ion Un and compare it with
a certain level U0. A low value of Un � U0 means that the electron either undergoes collision
or it is temporarily trapped by the ion. All electrons with Un > U0 are marked as ‘free’ ones.

The technique proposed here is to add a reflecting wall to the Hamiltonian (2)
�H = A(γ − γ (t0))

6�(γ − γ (t0)) when an electron moves away from the strong interaction
area (Un > U0), where t0 is the time moment when we mark this electron as ‘free’, A is
a dimensional coefficient and � is the Heaviside step function. If the interaction becomes
stronger (Un � U0), the restriction is switched off. It is possible to select U0 so that ν(ω = 0)

matches the result for the Kelbg potential (figure 1(b)). As seen from figures 2(a)–(c), the
type of WP restriction strongly affects the pair correlation function. In particular, the values
of gei(0) are close for the Kelbg potential and the proposed WP restriction whereas it is higher
for the harmonic constraint. This indicates that the WP constraint must be selected in a more
rigorous way and probably with the reference to the many-particle ab initio data.

Antisymmetrized construction of the total wavefunction accounts for exchange effects.
In this case, the resulting dynamical variables cannot be directly attributed to the individual
electrons and the electrons are in some sense delocalized by construction. The AWPMD
simulations of the hydrogen plasma [19] have shown that exchange effects may work as a
restricting factor for the WP widths. No additional localization constraints are found to be
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necessary for AWPMD at least for the temperature and density range studied in [19] (T �
5000 K). Our preliminary results however show that at higher temperatures (above
3 × 104 K), the problem of WP broadening remains even for the antisymmetrized model.

3. Conclusions

The problem of wave packet spreading in the WPMD simulations of electron–ion nonideal
plasmas is analysed. It is shown that in the case of non-antisymmetrized simulations, the
simple WP width restriction using the additional harmonic term in the Hamiltonian leads to
high sensitivity of the results for the dynamical collision rate (dynamical plasma conductivity)
to the model parameter γ0. Introducing periodical boundary conditions for the WP widths
may be thought of as a parameter free method to restrict the spreading of weakly coupled
WPs. However, this method leads to unsatisfactory collision rates and pair correlation. We
also discussed a restriction technique based on the electron–ion interaction energy, which does
not disturb the electron trajectories during close collisions.
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